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Fokker-Planck equation for bistable potential in the optimized expansion
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The optimized expansion is used to formulate a systematic approximation scheme to the probability distri-
bution of a stochastic system. The first-order approximation for the one-dimensional system driven by noise in
an anharmonic potential is shown to agree well with the exact solution of the Fokker-Planck equation. Even for
a bistable system the whole period of evolution to equilibrium is correctly described at various noise intensi-
ties.
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Introduction.The Fokker-Planck~FP! equation is widely
used to describe nonequilibrium systems in physics, chem
try, and biology@1#. The stochastic approach consists in re
resenting the most relevant degrees of freedom of the sys
by the variablex driven by noise and deterministic intera
tion potentialU(x,t). The time development of the probabi
ity distributionW(x,t) is given by a partial differential equa
tion

~]/]t ! W~x,t !5LFPW~x,t !:

5 ]/]x @U8~x,t !W~x,t !1D]2/]x2 W~x,t !#

~1!

with the diffusion coefficientD representing a noise inten
sity, and the drift coefficientU8(x,t) being a derivative of
the interaction potential with respect tox. The Green’s func-
tion of the FP equationP(x,tux8,t8) that fulfils the
initial condition P(x,tux8,t8)5d(x,x8), is called the
transition probability ~conditional probability!, since it
describes the probability density evolution,W(x,t)
5*P(x,tux8,t8)W(x8,t8)dx8, from time t8 to t. For a time-
independent potentialU(x) the separation ansatz

W~x,t !5F~x!e2kt ~2!

reduces the time-dependent FP equation~1! to the stationary
eigenfunction equation,

LFPF~x!5
]U8~x!F~x!

]x
1D

]2F~x!

]x2
52kF~x!. ~3!

The lowest eigenvalue ofLFP is identically zero,k50, and
the corresponding eigenfunction can be found exactly, yie
ing the stationary probability distributionWst(x)5F0(x)
5Ne2U(x)/D, where the normalization constantN
5(*2`

` e2U(x)/Ddx)21. For an arbitraryU(x) the higher
eigenfunctions and the nonstationary probability distribut
cannot be found exactly. For developing approximat
methods it is convenient to transform the FP operator to
Hermitian form by the transformation C(x)
5eU(x)/2DF(x). This brings the FP equation to the pseud
Schrödinger equation,
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@D d2/dx2 2V~x!#C~x!5lC~x! ~4!

for the particle of the massM5\/2D in the potential,

V~x!5 @U8~x!#2/4D 2 U9~x!/2 . ~5!

By Eq. ~2! the wave functionC evolves in imaginary time
2 i\t; the transition probability,P(x,tux8,t8), being the
Green’s function of the original FP equation~1!, is thus re-
lated to the imaginary time evolution amplitude of th
pseudo-Schro¨dinger equation~4!. The evolution amplitude
can be represented by a path integral

K~x,tux8,t8!5E
x(t8)5x8

x(t)5x

Dx expS 2E
t8

t

L@x#dtD ~6!

over all functions that begin atx(t8)5x8 and end atx(t)
5x, where the LagrangianL@x#5Mẋ2/21V(x). Both U(x)
and V(x) being time independent, the evolution depen
only on time difference,T5t2t8, and we have

P~x,x8,T!5e[U(x8)2U(x)]/2DK~x,x8,T!, ~7!

where K(x,x8,T)5K(x,t;x8,t8) and P(x,x8,T)
5P(x,tux8,t8). We study a stochastic system in an anh
monic potential

U~x!5 gx2/2 1lx4, ~8!

when the pseudo-Schro¨dinger potential~5! takes the form

V~x!5g01g2x21g4x41g6x6, ~9!

with g052 g/2 ; g25(g2/4D26l); g452lg/D; and g6
54l2/D.

For vanishingl the problem reduces to the Ornstei
Uhlenbeck process in the potentialU(x)5gx2/2. The
pseudo-Schro¨dinger potential is also quadratic,V(x)
52g/21(g2/4D)x2, and the path integral~6! yields

Kg~x,x8,T!5A g

2pD~12e22gT!
expH g

4D sinhgT

3@~x21x82!coshgT22xx8#J . ~10!
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By Eq. ~7! this leads to an exact expression for the transit
probability of the Ornstein-Uhlenbeck process

Pg~x,x8,T!5A g

2pD~12e22gT!
expS 2

g~x2x8e2gT!2

2D~12e22gT!
D .

~11!

In the presence of anharmonicity (lÞ0) the path integral
cannot be performed exactly, but various approximat
methods are developed. Perturbative calculations
P(x,x8,T) in powers ofl are possible only ifg.0. In this
case the first-order approximation describes well the ev
tion of the system approaching the stationary distribution
the long time limit. For double-well potential (g,0) the
transition probability is non-normalizable and perturbat
approximations give a wrong description of the time evo
tion, since the maxima of the transition probability escape
x56`.

A few years ago we formulated the optimized expans
~OE! scheme for the Schro¨dinger evolution amplitude@2#,
which is more powerful than the perturbative approach. T
aim of this paper is an extension of the OE to stocha
processes. The efficiency of the method will be shown on
example of a bistable system driven by noise in the dou
well potential. Such a system attracts much attention in n
linear optics, solid-state physics and chemistry. The solu
of the FP equation, which describes the evolution from
unstable to the stationary state is of special interest; howe
in all studies the evolution process is divided into few ste
and different approximations are used in each time sector@3#.
Our approximation has the advantage of being uniform in
whole period of stochastic evolution.

The optimized expansion.OE has been formulated to gen
erate nonperturbative approximations for the effective ac
in quantum field theory@4#. The method consists in calcula
ing the effective action as a series ine, by splitting the La-
grangian intoL5L01e(L2L0), where the unperturbed pa
contains arbitrary parameters, to be optimized in every or
calculation. The method is equivalent to a systematic res
mation of the perturbation series and gives the Hartree-Fo
Bogoliubov approximation in the leading order. A simil
idea has been applied to calculate other physical quantitie
a number of works@5,6# under different names~self-similar
perturbation theory,d expansion, variational perturbatio
theory, optimized perturbation theory, etc.!. In the applica-
tion to the quantum mechanical particle the classical
grangian in Eq.~6! is modified to the form

Lv@x#1eVint@x#5
Mẋ2

2
1

Mv2x2

2
1eS V~x!2

Mv2x2

2 D ,

~12!

where the harmonic oscillator of the massM and an arbitrary
frequencyv is chosen as the unperturbed system. The ima
nary time evolution amplitude

K~x,x8,T!5eW(x,x8,T) ~13!

can be calculated@2,7# with the cumulant expansion
06210
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W~x,x8,T!5Wv~x,x8,T!2e^Vint~x!&v

1 ~e2/2! ~^Vint
2 ~x!&v

2^Vint~x!&v^Vint~x!&v!2•••, ~14!

where by Eq.~10!

Wv~x,x8,T!

5 ln Kv~x,x8,T!

5 1
2 ln@v/~4pD sinhvT!#

2$v@~x21x82!coshvT22xx8#%/~4D sinhvT! ~15!

for the particle of the mass\/2D and the expectation value
are calculated for the unperturbed Lagrangian

^•••&v5E
x(t8)5x8

x(t)5x

Dx•••expS 2E
t8

t

Lv@x#dtD . ~16!

TheNth-order approximationW(N)(x,x8,T) is obtained after
settinge51, since only in this case does the modified L
grangian agree with the classical one. The exact result, b
a sum of an infinite series, would not depend on an arbitr
frequency,v, but a finite order truncation shows such a d
pendence. We fix, therefore, the value ofv by requiring

dW(N)/dv 50, ~17!

to make the given order approximant as insensitive as p
sible to small variation ofv. The optimization condition~17!
determinesv as a function ofx, x8, andT, which changes
from order to order, improving the convergence properties
the approximation scheme.

In the case of polynomial potential the expectation valu
~16! are given by Gaussian functional integrals, yielding
analytic expression forW(N). The first-order result for a quar
tic oscillator, obtained in Ref.@2#, provides a satisfactory
approximation to the evolution amplitude and particle de
sity. For a sextic potential~9! the first-order result reads

W(1)~x,x8,T!52g0T1Wv~x,x8,T!1~v2/4D 2g2!^x2&v

2g4^x
4&v2g6^x

6&v , ~18!

where ^x2&v5* t8
t

@L2(t)1K(t)#dt, ^x4&v5* t8
t

@L4(t)
16L2(t)K(t)13K2(t)#dt, ^x6&v5* t8

t
@L6(t)

115K(t)L4(t)145K2(t)L(t)2115K3(t)#dt with L(t)
5 @x sinhv(t2t8)1xbsinhv(t2t)#/@sinhv(t2t8)# and
K(t)5 @2D sinhv(t2t8)sinhv(t2t)#/@v sinhv(t2t8)# .Upon
performing the integrals we obtain

^x2&v5
1

4v2sinh2Tv
@2D22Tv2x222Tv2x82

14Tv2xx8coshTv22D cosh 2Tv

24vxx8sinhTv1v~2DT1x21x82!sinh 2Tv#,
1-2
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^x4&v5
1

32v3sinh4Tv
@36D2Tv154Dvx2212Tv3x4154Dvx82248Tv3x2x82212Tv3x84

124vxx8~2Tv2x212Tv2x8223D !coshTv224v~2Dx212Dx821D2T1v2x2x82T!cosh 2Tv

172Dvxx8cosh 3Tv26Dv~2DT1x21x82!cosh 4Tv236v2xx8~4DT1x21x82!sinhTv

14~18DTv2x212v2x4118DTv2x8219v2x2x8212v2x8429D2!sinh 2Tv24v2xx8~12DT1x2

1x82!sinh 3Tv1~18D22v2x42v2x84!sinh 4Tv#,

^x6&v5
1

384v4sinh6Tv
@60~35D3272D2Tv2x2220Dv2x412Tv4x6272D2Tv2x82281Dv2x2x82118Tv4x4x82

220Dv2x84118Tv4x2x8412Tv4x86!1240v2xx8~36D2T114Dx223Tv2x4114Dx8229Tv2x2x82

23Tv2x84!coshTv215~150D32144D2Tv2x2265Dv2x42144D2Tv2x822192Dv2x2x82248Tv4x4x82

265Dv2x84248Tv4x2x84!cosh 2Tv2120v2xx8~63D2T127Dx2127Dx8212Tv2x2x82!cosh 3Tv

2120v2xx8~63D2T127Dx2127Dx8212Tv2x2x82!cosh 4Tv2120Dv2xx8~9DT1x21x82!cosh 5Tv

115D~22D22v2x42v2x84!cosh 6Tv2120vxx8~105D2248DTv2x224v2x4248DTv2x8229v2x2x82

24v2x84!sinhTv215~150D32144D2Tv2x2265Dv2x42144D2Tv2x822192Dv2x2x82248Tv4x4x82

265Dv2x84248Tv4x2x84!sinh 2Tv2120v2xx8~63D2T127Dx2127Dx8212Tv2x2x82!sinh 3Tv

2120v2xx8~63D2T127Dx2127Dx8212Tv2x2x82!sinh 4Tv2120Dv2xx8~9DT1x21x82!sinh 5Tv115D~22D2

2v2x42v2x84!sinh 6Tv#.
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The imaginary time evolution amplitude for the quantu
mechanical particle in the sextic potential~9! is obtained by
taking

K (1)~x,x8,T!5eW(1)(x,x8,T). ~19!

This approximate solution of the Schro¨dinger equation de-
fines, by Eq.~7!, an approximation to the transition probab
ity of the stochastic process in a quartic potential~8! to be
given by

P(1)~x,x8,T!5e[U(x8)2U(x)]/2DeW(1)(x,x8,T). ~20!

The value ofv for considered values ofx, x8, and T is
obtained by solving the optimization conditio
@dW(1)(x,x8,T)#/dv 50.

Results and conclusions. The first-order OE~20! provides
a good approximation to the transition probability, when t
interaction potential is convex (g.0); however, for larger
anharmonicity the total probability decreases in time. A sim
lar problem appears in the variational perturbation calcu
tion @8#, where the total probability increases in time. T
spoiling of the normalization by optimization is a gene
feature of perturbative schemes with variational parame
and can be cured by normalizing each order result by ha
Upon normalization a good agreement with the exact so
06210
e

-
-

l
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tion of the FP equation is obtained in the whole period
evolution. Here we show the results in the most demand
case of double-well interaction potential (g,0), when the
pseudo-Schro¨dinger potential has a multiple-well structur
The critical value of the diffusion coefficient (Dcr
5g2/24l), distinguishes two cases: the pseudo-Schro¨dinger
potential of double-well shape~large noise,D.Dcr), and of
triple-well shape~small noise!.

We compare our approximation to the transition probab

FIG. 1. The transition probabilityP(x,tu0,0) for bistable poten-
tial U(x)52x2/21x4 at D50.1 in the first order of the OE
~dashed line! at the timet50.3, t50.9, t51.2, andt56, compared
with the exact results@9# ~solid line!.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 062101
ity, P(x,tu0,0), with the exact results calculated numerica
@3,9# for the interaction potentialU(x)52 1

2 x21 1
4 x4 in the

most demanding case of small noise, (D,Dcr5
1
6 ). The evo-

lution of the transition probability at noise intensityD50.1
is shown in Fig. 1, and the results atD50.05 andD50.01,
in Figs. 2 and 3, respectively. The transition probability f
the system being initially in the unstable state@P(x,0u0,0)
5d(x20)# is presented at different times: the first value
in the initial region, next ones are in the intermediary regi
and the time when the stationary distribution is alrea
achieved. It is remarkable that a good description of the e
lution from the unstable configuration to the stable one
obtained already in the first order of the OE, even in
difficult case of small noise. This is due to optimization
the variational parameterv. The description is uniform
since the optimization condition~21! has a solution for all
the values ofx during the whole period of evolution. ForD
50.05 andD50.01 our approximation is of similar qualit
as the two- or three-stage approximations based onV expan-
sion @3#, and also a good description is obtained forD50.1,
when the approximation discussed by Hu becomes ina
rate as observed in Ref.@9#.

After completing this work we learned that approxima
solutions of the FP equation in an anharmonic potential h
been also studied by directly improving the perturbative
pansion of the transition probability, using a drift coefficie
as a variational parameter@8#. The variational expression
substantially differ from ours, because the sextic term of

FIG. 2. Same as in Fig. 1, but forD50.05 att50.9, t51.5, and
t56, compared with the exact results@3# ~solid line!.
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pseudo-Schro¨dinger potential~9! does not contribute to the
first order of their method. In the case of single-well pote
tial the variational parameter is uniquely determined by
tremum condition, in analogy to our optimization conditio
and numerical results for the transition probability are sim
lar to ours. In the case of bistable system the extremum c
dition has a solution only in the early stage of evolution, a
different criteria of the variational parameter fixing have
be invoked for larger times. In this manner a very good d
scription of the final stage of evolution is obtained, but t
intermediate stage is described badly. This is in differen
with our approximation that is continuous in time, even f
bistable system. With a unique criterium of optimization
the whole period of evolution our method provides a ve
good approximation of the initial and intermediate stage, d
crepancies appear only in the final stage of evolution.

One has to note that the accuracy of our approximat
can be improved by higher-order calculation in a system
way. An extension of our approach to higher-dimensio
systems is possible. Also the dynamics of stochastic syst
driven by time-dependent forces can be studied in the O
The influence of a periodic force on the bistable syste
which is a topic of current interest because of the pheno
enon of stochastic resonance, will be discussed in a fu
publication.

The author thanks Axel Pelster and Hagen Kleinert
useful discussions and showing her the results of their w
before publication. The support from DAAD is gratefull
acknowledged.

FIG. 3. Same as in Fig. 1, but forD50.01 att51.2, t52.2 and
t56, compared with the exact results@3# ~solid line!.
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