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Fokker-Planck equation for bistable potential in the optimized expansion

Anna Okopirska
Institute of Physics, Pedagogical University, Konopnickiej 15, 25-406 Kielce, Poland
and Institute fu Theoretische Physik, Freie UniversitBerlin, Arnimallee 14, D-14195 Berlin, Germany
(Received 22 November 2001; revised manuscript received 19 March 2002; published 25 June 2002

The optimized expansion is used to formulate a systematic approximation scheme to the probability distri-
bution of a stochastic system. The first-order approximation for the one-dimensional system driven by noise in
an anharmonic potential is shown to agree well with the exact solution of the Fokker-Planck equation. Even for
a bistable system the whole period of evolution to equilibrium is correctly described at various noise intensi-

ties.
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Introduction. The Fokker-PlanckFP) equation is widely [D d¥/dx? —V(x) ¥ (x) = AP (x) (4)

used to describe nonequilibrium systems in physics, chemis-

try, and biology{1]. The stochastic approach consists in rep-for the particle of the massl =7/2D in the potential,
resenting the most relevant degrees of freedom of the system

by the variablex driven by noise and deterministic interac- V(x)=[U’(x)]?/4D — U"(x)/2. )
tion potentialU (x,t). The time development of the probabil-
ity distribution W(x,t) is given by a partial differential equa-
tion

By Eq. (2) the wave function evolves in imaginary time

—i#it; the transition probability,P(x,t|x’,t’), being the

Green'’s function of the original FP equatiéd), is thus re-

_ ) lated to the imaginary time evolution amplitude of the

(9176 WO = LepW(X,U): pseudo-Schidinger equation(4). The evolution amplitude
= gl ax[U" (x,t)W(x,t) + D%/ x> W(x,1)] can be represented by a path integral

N X(t)=x
K(x,tlx’,t’)=J © Dxexp(—JtL[x]dt) (6)
tf

with the diffusion coefficienD representing a noise inten- X(t')=x'
sity, and the drift coefficient)’(x,t) being a derivative of . . N
thginteraction potential with re(spe)ctXOT?we Green's func- V€' all functions  that F)egln ai(t .)Z_X and end ax(t)

tion of the FP equationP(x,t|x’,t') that fulfils the =X, where the Lagrangiah[x]=Mx“/2+V(x). Both U(x)
initial condition P(x,t|x’,t')=8(x,x'), is called the and V(x)_ beln_g time independent, the evolution depends
transition probability (conditional probability, since it ©Only on time differenceT=t—t’, and we have

describes the probability density evolutionW(x,t)

’ _ A[Ux")-U 12D '
=[P(x,t|x’,t")W(x',t")dx’, from timet’ to t. For a time- P(x,x’,T)=elVCO=VOIZPK (x x",T), (7)
independent potentidl (x) the separation ansatz where  K(xx'.T)=K(x.t:x' .t') and P(x.x'.T)
W(x,1)=d(x)e 7 =P(x,t|x’,t"). We study a stochastic system in an anhar-

monic potential

reduces the time-dependent FP equatDrto the stationary U(x)= yx/2 +ax ®
eigenfunction equation, ’

when the pseudo-Schiimger potential5) takes the form

AU’ (X)D(x) +Do72<I>(x) B

Lep®(x)= =—k®(x). 3 V(X)=go+ gox2+ gax*+gex®, 9

IX (9X2
with go=— y/2; g,=(y*/4D—6)\); g,=2\y/D; and gg

The lowest eigenvalue df.p is identically zeroxk=0, and =4)\?/D.

the corresponding eigenfunction can be found exactly, yield- For vanishing\ the problem reduces to the Ornstein-

ing the stationary probability distributiofVs(X) =®o(X)  Uhlenbeck process in the potentidl(x)=yx?/2. The

=Ne Y®W'®  where the normalization constantN  pseudo-Schidinger potential is also quadraticV(x)

=(/7..e”Y¥'Pdx) "t For an arbitraryU(x) the higher = — /24 (y2/4D)x2, and the path integrdb) yields

eigenfunctions and the nonstationary probability distribution

cannot be found exactly. For developing approximation , / y y

methods it is convenient to transform the FP operator to the K (x,x",T)= 277D(1—e‘27T)CXp|’4D SinhyT

Hermitian  form by the transformation W¥(x)

=eY®/2P(x). This brings the FP equation to the pseudo-
Schralinger equation, X[ (x?+x'?)coshyT— 2xx’]] : (10)
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By Eq. (7) this leads to an exact expression for the transition W(x,x", T)=W,(x,x",T) = & Vini(X))
probability of the Ornstein-Uhlenbeck process ) )
+(€72) ((Vind(X))

R Y R y(x—x'e”7T)? —(V. V. - .. 14
Py(X,X 1) = ZwD(l_e_zyT)cX[{ - 2D(1—e_27T))- < Int(X)>w< |nt(X)>w) ) (14

(11 where by Eq(10)

In the presence of anharmonicity £0) the path integral W, (x,x',T)

cannot be performed exactly, but various approximation

methods are developed. Perturbative calculations of =InK,(x,x",T)
P(x,x",T) in powers of\ are possible only ify>0. In this .

czgse the)firstr-)order approximgtion descri)lgez well the evolu- = 2 IN[@/(47D sinhwT)]
tion of the system approaching the stationary distribution in [ (x2+x'2)coshwT—2xx']}/(4D sinhwT) (15
the long time limit. For double-well potentialy&0) the

transition probability is non-normalizable and perturbativefoy the particle of the mask/2D and the expectation values

tion, since the maxima of the transition probability escape to

X=too, x(t)=x t
A few years ago we formulated the optimized expansion (-- ->a,=f Dx- - 'exp< —f Lw[x]dt). (16)
(OE) scheme for the Schdinger evolution amplitudg2], X(t)=x' v

which is more powerful than the perturbative approach. The ) D )

aim of this paper is an extension of the OE to stochastid "€ Nth-order approximatioV"™(x,x",T) is obtained after
processes. The efficiency of the method will be shown on thé€ttinge=1, since only in this case does the modified La-
example of a bistable system driven by noise in the doubledrangian agree vy|th theT classical one. The exact result, _belng
well potential. Such a system attracts much attention in non@ SUm of an infinite series, would not depend on an arbitrary
linear optics, solid-state physics and chemistry. The solutiofféduency,», but a finite order truncation shows such a de-
of the FP equation, which describes the evolution from arPendence. We fix, therefore, the valuewfoy requiring
unstable to the stationary state is of special interest; however,

in all studies the evolution process is divided into few steps W/ 5w =0, (17

and different approximations are used in each time s¢8{or

Our approximation has the advantage of being uniform in théo make the given order approximant as insensitive as pos-
whole period of stochastic evolution. sible to small variation of. The optimization conditioi(17)

The optimized expansio®E has been formulated to gen- determinesw as a function ofx, x’, and T, which changes
erate nonperturbative approximations for the effective actioirom order to order, improving the convergence properties of
in quantum field theory4]. The method consists in calculat- the approximation scheme.
ing the effective action as a seriesdnby splitting the La- In the case of polynomial potential the expectation values
grangian intoL =L+ e(L—L,), where the unperturbed part (16) are given by Gaussian functional integrals, yielding an
contains arbitrary parameters, to be optimized in every ordeanalytic expression fon™). The first-order result for a quar-
calculation. The method is equivalent to a systematic resuntic oscillator, obtained in Refl2], provides a satisfactory
mation of the perturbation series and gives the Hartree-Fockapproximation to the evolution amplitude and particle den-
Bogoliubov approximation in the leading order. A similar Sity. For a sextic potentia) the first-order result reads
idea has been applied to calculate other physical quantities in
a number of workg5,6] under different namegself-similar ~ W(x,x, T)= = goT+W,,(x,x’,T) + ( 0?/4D —g,)(x?),,
perturbation theory,d expansion, variational perturbation

theory, optimized perturbation theory, etcin the applica- =94~ 96(x)u (18
tion to the quantum mechanical particle the classical La- ) ter g 4 o a

grangian in Eq(6) is modified to the form where  (x9),= [ [LY(7)+K(n)]d7, (x"),=[,[L*(7)

_ +6L2(7)K(7) +3K3(7)1dT, (X8, =1, [LS(7)

Mx?> Mw?x? M w?x? + 15K (7)LA(7) + 45K (1)L (7)2+ 15K3(7)]dr with L(7)

L [X]+ €Vinx]= T+T+ €|V - 2 | =[x sinhw(7—t")+X,sinhw(t—7)]/[sinhw(t—t")] and

(12 K(7)=[2D sinhw(7—t")sinhw(t—7)][w sinhw(t—t")].Upon
performing the integrals we obtain
where the harmonic oscillator of the maddsand an arbitrary
frequencyw is chosen as the unperturbed system. The imagi-

. . . 2 2y,2 212
X2, =————[2D - 2T w?x?— 2Tw?x
nary time evolution amplitude (x%) 4w28inhzTa)[
K(x,x',T)=eWxx".T) (13 + 4T w?xx' coshTw— 2D cosh T w
can be calculatef2,7] with the cumulant expansion —4wxx'sinhTw+ w(2DT+x%+x'?)sinh 2Tw],

062101-2



BRIEF REPORTS PHYSICAL REVIEW E 65 062101

(x¥,= [36D2Tw+ 54D wx?— 12T w3x*+ 54D wx' 2— 48T w3x*x'?— 12T w3x"*

3203siniTw
+ 24wxx' (2T w?x?+ 2T w?x’%2—3D)coshTw— 24w(2Dx%+ 2D X' 2+ D?T+ w?x?x’2T)cosh T w
+ 72D wxx'cosh T w— 6D w(2D T+ x>+ x'?)cosh 4T w — 36w?xx' (4DT+x2+x'?)sinhTw
+4(18DTw?X?+ 2w*x*+ 18D Tw?X' %+ 9w?X?X 2+ 2w?Xx'*—9D?)sinh ZTw — 4w?Xxx’ (12D T+ X2

+x'?)sinh 3Tw+ (18D?— w?x*— w?x’*)sinh 4T w],

(x®%,= [60(35D3— 72D 2T w?x*— 20D w?x*+ 2T w*x®— 72D?Tw?x' 2— 81D w?x?x’ 2+ 18T w*x*x'?

384w*sintPTw
— 20D X4+ 18T w*x?x"*+ 2T w*x'®) + 240wxx’ (36D 2T + 14Dx?— 3T w?x*+ 14D x' 2 — 9T w?x?x'?
—3Tw?x'*)coshTw— 1515003~ 144D °T w?x?— 65D w?x*— 144D °T w?x' 2 — 192D w?x?x' 2 — 48T w*x*x'?

— 65D w?x’4— 48T w*x?x’ ) cosh T v — 120w?xx’ (63D?T + 27D x>+ 27Dx’ %+ 2Tw?x?x'?)cosh T w

—120w%xx' (63D?T+27Dx?+ 27DX' 2+ 2T w?x?x’ ?)cosh AT w— 120D w?xx’ (9D T+ x%+x'2)cosh 5T w
+15D(22D?%— w?x*— w?x"*)cosh 6T w— 120wxx’ (105D2— 48D T w?x?— 4w?x*— 48D T w?x' > — 9w?x°x"?
—4w*x' " sinhTw— 1515003 — 144D?T w?x?— 65D w?x* — 144D °T w?x’ ?>— 192D w?x°x' 2 — 48T w*x*x'?

— 65D w?x’4— 48T w*x?x’%)sinh 2T w — 120w?xx’ (63D T+ 27Dx%+ 27D X' 2+ 2T w?x?x'?)sinh 3Tw
—120w%x X' (63D?T+ 27Dx?+ 27DX' 2+ 2T w?x?x' ?)sinh 4T w — 120D w?xx’ (9D T + x+ x'?)sinh 5T w + 15D (22D?

— w?*— w?x'*)sinh 6T w].

The imaginary time evolution amplitude for the quantumtion of the FP equation is obtained in the whole period of
mechanical particle in the sextic potent{8) is obtained by evolution. Here we show the results in the most demanding

taking case of double-well interaction potentiaj<€0), when the
pseudo-Schidinger potential has a multiple-well structure.
K@O(x,x',T)=eWHox'm) (190 The critical value of the diffusion coefficient D(,

= y?[24)\), distinguishes two cases: the pseudo-Sdimger
This approximate solution of the Schiinger equation de- potential of double-well shapiarge noiseD>D,), and of
fines, by Eq(7), an approximation to the transition probabil- triple-well shape(small noisg.
ity of the stochastic process in a quartic potent&lto be We compare our approximation to the transition probabil-
given by

PM(x,x', T)= e[U(x’)—U(x)]/zoew“)(x,x’,T)' (20) 1.2

The value ofw for considered values of, x’, and T is
obtained by solving the optimization condition
[SWD(x,x",T)]/ Sw =0.

Results and conclusion$he first-order OE20) provides
a good approximation to the transition probability, when the 0.4}
interaction potential is convexy0); however, for larger
anharmonicity the total probability decreases in time. A simi-
lar problem appears in the variational perturbation calcula- 1.5 -1 0.
tion [8], where the total probability increases in time. The z
spoiling of the normalization by optimization is a general  FiG. 1. The transition probabilit?(x,t|0,0) for bistable poten-
feature of perturbative schemes with variational parametergal U(x)=—x2/2+x* at D=0.1 in the first order of the OE
and can be cured by normalizing each order result by handdashed lingat the timet=0.3,t=0.9,t=1.2, andt=6, compared
Upon normalization a good agreement with the exact soluwith the exact resultg9] (solid line).

P(z,]0,0)
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FIG. 2. Same as in Fig. 1, but f@r=0.05 att=0.9,t=1.5, and FIG. 3. Same as in Fig. 1, but f@=0.01 att=1.2,t=2.2 and
t=6, compared with the exact resu[t3] (solid line). t=6, compared with the exact resul] (solid line).

pseudo-Schinger potential(9) does not contribute to the
first order of their method. In the case of single-well poten-
tial the variational parameter is uniquely determined by ex-
: o - _cr tremum condition, in analogy to our optimization condition,
lution of the transition probability at noise intensity=0.1 514 hymerical results for the transition probability are simi-
is shown in Fig. 1, and the resultsBt=0.05 andD=0.01, |4y to ours. In the case of bistable system the extremum con-
in Figs. 2 and 3, respectively. The transition probability for gition has a solution only in the early stage of evolution, and
the system being initially in the unstable st§f(x,000,0) different criteria of the variational parameter fixing have to
=o6(x—0)] is presented at different times: the first value ispe invoked for larger times. In this manner a very good de-
in the initial region, next ones are in the intermediary regionscription of the final stage of evolution is obtained, but the
and the time when the stationary distribution is alreadyintermediate stage is described badly. This is in difference
achieved. It is remarkable that a good description of the evowith our approximation that is continuous in time, even for
lution from the unstable configuration to the stable one isbistable system. With a unique criterium of optimization in
obtained already in the first order of the OE, even in thethe whole period of evolution our method provides a very
difficult case of small noise. This is due to optimization of good approximation of the initial and intermediate stage, dis-
the variational parametew. The description is uniform, crepancies appear only in the final stage of evolution.
since the optimization conditiof1) has a solution for all One has to note that the accuracy of our approximation
the values ok during the whole period of evolution. F&  can be improved by higher-order calculation in a systematic
=0.05 andD=0.01 our approximation is of similar quality way. An extension of our approach to higher-dimensional
as the two- or three-stage approximations basef@ @xpan-  systems is possible. Also the dynamics of stochastic systems
sion[3], and also a good description is obtained b+ 0.1,  driven by time-dependent forces can be studied in the OE.
when the approximation discussed by Hu becomes inaccuFhe influence of a periodic force on the bistable system,
rate as observed in RgB]. which is a topic of current interest because of the phenom-
After completing this work we learned that approximateenon of stochastic resonance, will be discussed in a future
solutions of the FP equation in an anharmonic potential haveublication.
been also studied by directly improving the perturbative ex- The author thanks Axel Pelster and Hagen Kleinert for
pansion of the transition probability, using a drift coefficient useful discussions and showing her the results of their work
as a variational paramet¢8]. The variational expressions before publication. The support from DAAD is gratefully
substantially differ from ours, because the sextic term of theacknowledged.

ity, P(x,t|0,0), with the exact results calculated numerically
[3,9] for the interaction potentidl (x) = — $x?+ $x* in the
most demanding case of small noisB,<D.,= %). The evo-
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